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ABSTRACT

This manual is intended as a guide for application's programmers using the

Concurrent Image Processing Executive (CIPE). CIPE is intended to become

the support system software for a prototype high performance science analysis

workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark IIIfp

Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other
concurrent architectures as well. CIPE provides a programming environment to

applications' programmers to shield them from various user interfaces, file

transactions, and architectural complexities. A programmer may choose to

write applications to use only the Sun-4 or to use the Sun-4 with the

hypercube. A hypercube program will use the hypercube's data processors and

optionally the Weitek floating point accelerators. The CIPE programming

environment provides a simple set of subroutines to activate user interface

functions, specify data distributions, activate hypercube resident applications,

and to communicate parameters to and from the hypercube.
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1. INTRODUCTION TO CIPE

Concurrent systems provide greatly enhanced computational power by

integrating large numbers of processors via various interconnection topologies.

However, they present significant programming difficulties due to their

architectural complexities. CIPE is designed to shield the architectural

complexities from programmers, to provide an interactive image processing

environment for users, and to utilize the architectural characteristics of a

concurrent system (interconnection topology, processing power, memory) for

securing the computational power of the system.

In a traditional image processing environment, a user activates a program and

provides file names for input and output, thus involving an explicit file

transaction for each program. The file transaction oriented data manipulation is

very inefficient and cumbersome in an interactive image processing

environment. In CIPE, image processing programs and datasets are viewed as

subroutines and variables that a user can manipulate interactively without file

transactions. Such an environment is achieved via a combination of interactive

user interface modes, incremental loading of image processing modules,

symbolic data management, and an automatic data distribution/retrieval process.

In order to shield an applications programmer from various user interfaces, file

transactions, and architectural complexities, the CIPE programming

environment offers a simple set of subroutines for activating user interface

functions, specifying data distributions, activating hypercube resident

application routines, and communicating parameters to and from the hypercube

routines. An applications programmer does not have to be aware of actual user

interface modes, or data distribution and hypercube communication protocols.

This manual is designed to provide all the necessary information for a

programmer to write application programs to be run within CIPE. The current

implementation of CIPE uses a Sun-4 host computer and a JPL/Caltech Mark

IIIfp 8-node hypercube. Application programs may run without the use of a

coprocessor, and use only the resources of the Sun-4, or they may run with a

coprocessor, and use the resources of the Mark IIIfp hypercube, with or without

the Weitek floating point accelerators. Other attached concurrent systems may

be supported in the future.

Throughout this manual the term programmer is used to refer to a CIPE

applications programmer. The term user is used to refer to a CIPE user.
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2. PROGRAMS WITHOUT A COPROCESSOR

An application program consists of three basic parts: the user interface, data

I/O, and data processing. CIPE provides a programmer with commands for

accomplishing the user interface and data I/O, and expects the programmer to

provide the algorithm for data processing. Without the use of a coprocessor, all

of the parts of an application program run within the host system. If a

coprocessor is used with CIPE, the user interface is implemented in the host,

the data I/O takes place between the host and the coprocessor, and the data

processing takes place in the coprocessor.

2.1. Include Files

All programs to be run in the host must include the file cipeappl.h, found in

/usr/local/include. This file should provide a CIPE applications programmer

with all the definitions and declarations necessary to use CIPE-provided

routines. A copy of the file has been included in Appendix A for programmer

reference. Any other files to be included are at the programmer's discretion.

For an example, see the Include Files section of the sample program in Figure

2.1.

2.2. User Interface

CIPE provides two operational user modes, command line interpreter (CLI)

mode and menu mode. Differences in user modes are made transparent to the

applications programmer through the use of two routines, cipedef and cipepar,

which are able to interface to either of the user modes.

2.2.1. Use of cipedef

The routine cipedef associates a user's input with a variable declared in the

application. A sample cipedef statement is shown below, and a description of

its parameters follows.

cipedef(param_num,prompt,paramtype,paramstorage,

num of elements,ifreq);

A parameter number should be the first value passed to cipedef. The first call

to cipedef should provide a param_num of 1. Successive calls to cipedef

should provide successive integer values for param__num.

The second value passed to cipedef should be a prompt string. In CLI mode a

user is expected to know the order of parameters and will receive no prompts.
In menu mode, however, the prompt will appear on the screen to assist the

user.

,-<_L,r.._,,,u PAGE BLA_}( I_IOT FILMED
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******************************* INCLUDE FILES ********************************* /
#include <stdio.h>

#include <ctype a'a>
#include "cipeappl.h"

powerspecO

cipe_sym_name input_real, input_imagi, output;
lnt p;

char option[3];

p= 1;
strcpy(option,"y");

******************************* USER INTERFACE ********************************/
cipedef (p++, "real symbol ", INPUT_SYMBOL input_real,

slzeof(cipe_sym_name), REQ);

cipedef (p++, "imaginary symbol ", INPUT_SYMBOL, inputimagi '
sizeof(cipe_sym_name), REQ);

cipedef (p++, "power specmm symbol ", OUTPUT SYMBOL, output,
slzeof(cipe sym_name), REQ);

cipedef (p++, "fold for display (y/h)", STRING, option,
sizeof(option), DEFAULT);

If (cipepar(check_power, help__power)) return(-1);

powerspec

if (strcmp(option,"y" )==-0)

host_.power_.spec(inputreal,inpuLimagi,output, 1);
else

host_powerspec(inputreal,inputimagi,output,O);

check_..power(params 0aumber,v alue)
struet param *params;
lnt number;

union {int i; double f; char *s;} value;
{

int error, whereis;
error = 0;
switch(number) {

case 0: error = cipe_error_read_symbol(value.s);
break;

case I: error = cipe error_read_symbol(value.s);
break;

ease 2: error = cipe_warn_write_symbol(value.s);

error = O; /* User is warned but not forced to give */
I* a new value. * I

break;

/* no check, "y" will be taken as yes, everything else as no */
break;

case 3:

return(error);

help__power(params,number)

struet pararn *params;

int number;

I
switch (number) {

case 0,1:

prinff("A valid input symbol must be associated");
l:rintf("with two dimensional image data.");
break;

case 2:

prinffCA valid output symbol must not already exist.");

printfCYou may see if it does by using List from the");
printf("Symbol menu.");
break;

case 3:

printfCUse a y to indicate you would like it folded ");

prinffCfor display. Otherwise, use another character.");
break;

}

Figure 2.1 Application Program Without a Coprocessor

check_.power

help_.power
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host_.power._spec(input_real, input_imagi.output,disp)

cipe_sym_narne *input_real.*input_imagi,*output;

lnt disp;

(
struct cipe_symbol *sin_real, *sin_imagi, *sout;

float *power_disp_data, *pl;

********************************* DATA I/0 ************************************/

sin real = cipe_get_symbol (input_real);

sin-imagi = eipe_get_symbol (inputimagi);
sout = cipe_ereate symbol and data(output,

CIPENL(sin_real),CIPENS (sin_real), 1,FLOAT_TYPE);

******************************** DATA PROCESSING ****************************** /

power_spec(CIPEDATA(sin_real).CIPEDATA(sin_imagi),CIPEDATA(sout),

CIPENL(sin_real),CIPENS (sin_real));

If (disp) {
power_disp_data = (float *)malIoc(CIPEDATASIZE(sout));

If (power_disp_d_ = NULL) {

prinff("powerdisp_data malloc failurekn");
return(-1);

}
pl = (float *)CIPEDATA(sout);
pl[0] = 0.0; I* turn off the sum for better contrast */

fold_image (CIPEDATA(sout),power_disp_data, CIPENL(sout));

free (CIPEDATA(sout));
CIPEDATA(sout) = (unsigned ehm" *)power_disp_data;

power_spec(real,imagi,power,nl,ns)

float *real,*imagi, *power;
int nl,ns;

{
register float *pl,*p2, *p3;

lnt i;

double temp;

pl = real;

p2 = imagi;
p3 = powex;
for (i=_, i<nl*ns; i++) {

temp = (*pl * *pl) + (*p2 * *p2);

• p3++ = temp;

pl++;
p2++;

}
}

fold__image(array,brray,n)
float *array,*brray;
int n;

(
int ioff, joff, i,j;

register float *pl;

pl = brray;
for (i=n/2; i<n+n/2; i++) I

ioff = i%n;

for (j=n/2; j<n+n/2; j++) {

joff = j%n;
*pl++ = array[ioff*n+joff];

}
}

host__power__spec

power_spec

fold_image

Figure 2.1 (contd)
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The value of param_type indicates the type of value the user is expected to

enter. CIPE provides keywords for the programmer's use to express the type.

Figure 2.2 is a list of cipedef's valid type keywords.

INPUT SYMBOL

OUTPtTT SYMBOL

STRING

INT

FLOAT

DOUBLE

BOOL

INT ARRAY

FLOAT ARRAY -

DOUBLE ARRAY

scalar and vector

scalar and vector

scalar and vector

scalar and vector

two-dimensional

two-dimensional

two-dimensional

Figure 2.2 Valid Type Keywords

A symbol, as in INPUT_SYMBOL and OUTPUT_SYMBOL, is CIPE's means

of representing data and will be discussed in Section 2.3. STRING may be any

type of string. INT, FLOAT, DOUBLE, and BOOL may represent single

values of that type, or a one-dimensional array of values of that type.

INT_ARRAY, FLOAT_ARRAY, and DOUBLE_ARRAY permit two-

dimensional arrays of that type.

The variable param_storage is a pointer to the location where the user's input

is to be placed. The space pointed to by param...storage must have been

previously allocated by the programmer. CIPE is unable to verify that the

programmer has provided adequate space. When cipepar is called, the user's

input is placed at the specified location.

The value needed by num of elements is dependent upon the paramtype

specified. In the case of an INPUT_SYMBOL, OUTPUT_SYMBOL, or
STRING, hum of elements should be the maximum number of characters that

the user is permitted to give. The combined length of prompt and the user's

input string must be less than seventy characters. In the following example of a

cipedef command for an INPUT_SYMBOL, the user is permitted to give an

input symbol name of up to 32 characters.

typedef cipesym_name char[32]; /* defined in cipeappl.h */

cipe_sym_name in;

cipedef(1,"input name", INPUT_SYMBOL, in, sizeof(in), REQ);
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In the case of INT, FLOAT, DOUBLE, and BOOL, num of elements is

expected to be the number of integers, floats, doubles, or Booleans, expected of

the user. The value for hum of elements may not exceed ten since that is the

maximum number that will fit in a parameter window. A eipedef command for

two INTs might look like:

int window[2];

cipedef(l,"filter window(nlw,nsw)", INT, window, 2, REQ);

In the case of INT_ARRAY, FLOAT_ARRAY, or DOUBLE_ARRAY, two

values are expected for num of elements, one for the number of rows and one

for the number of columns. The parameter window again imposes the limit on

the number of rows and colunms. Arrays may have up to ten rows and seven

columns. The argument declarations and cipedef command for an

INT ARRAY might look like:

int *weights;

int window[2];

weights = (int *)malloc(sizeof(int) * window[0] * window[l]);

cipedef(2, "weights", INT_ARRAY, weights, window[0], window[l], REQ);

The last value passed to cipedef indicates whether a user is required to provide

a value where one is requested. If the value is required, the keyword REQ
should be used. If default values are available and a user is not required to

provide a value, the keyword DEF should be used. If DEF is used, a

programmer should store the default values in param_.storage. There is no

means of ensuring that a programmer has done this. When the parameter entry

screen in menu mode appears the default value will appear beside the prompt.

The user may leave the default if he/she does not care to provide another value.

If REQ is used, a user will not be allowed to complete the menu entry screen

and continue running an application without providing a value for the

parameter. In CLI mode a user must provide values for all parameters whether

defaults are available or not. This is because the parser parses in order and is

unable to skip parameters.

2.2.2. Use of cipepar

The ultimate task of cipepar, in either user mode, is to store a user's input in

the provided storage locations so it is available to the application. In' menu

mode, cipepar also creates a parameter entry screen for the user of the prompts

provided to cipedef and blanks corresponding in length to the

num of elements the user may input. An application may provide multiple

parameter entry screens by multiple sets of cipedef and cipepar calls.
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The cipepar routine provides some user input error checking for the

programmer. For all parameter types except strings, eipepar is able to verify

that the user has given the proper type of input. For parameters declared to be

INPUT_SYMBOLs, eipepar checks to make sure the symbol exists, and issues

an error if it does not. For parameters declared to be OUTPUT_SYMBOLs,

cipepar checks to see if the symbol exists and issues a warning if it does. If

the user chooses to ignore the warning the old symbol will be overwritten.

Cipepar also allows the programmer to provide his/her own error checking

instead of using that provided by CIPE. Moreover, eipepar allows

programmers to provide a user help for parameter input. If a programmer

chooses to use only cipepar's provided error checking and chooses not to

provide help, the keywords NOECHK and NOHELP may be given to cipepar

to indicate the absence of any specialized error checking or help routine(s).

if (cipepar(NOECHK, NOHELP) == -I) return(-l);

If a programmer desires to provide error checking or help, he/she must provide

error checking and help routines. These routines must also be declared. The

routines should include a switch statement which switches on the parameter

numbers, as specified in cipedef, to provide error checking or help as desired.

If a programmer provides an error checking routine, it is necessary for it to

perform all the error checking desired, including that which eipepar normally

provides. The routines cipepar uses to do its error checking are available to

the programmer to use. The routine cipe_.error_read_symbol takes a symbol

name as input and checks to see if it is present. If the symbol does not exist it

returns -1 and prints an error message on the user's parameter screen.

Typically, cipe_error_read__symbol would be used for INPUT_SYMBOLs.

typedef cipesym_name char[32]; /* defined in cipeappl.h */

cipesym_name sname;

ok = cipe_error_read_symbol(sname);

The routine cipe_warn_write_symbol also takes a symbol name as input and

checks for its existence. Typically cipe_warn_write._symbol would be used

for OUTPUT_SYMBOLs. If the symbol exists it prints a warning message.

No error is returned if the symbol exists because it is conceivable that a user

could choose to write one symbol over another. If a user chooses to ignore the

warning, the output symbol will be overwritten.
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typedef cipesym_name char[32]; /* defined in cipeappl.h */

cipe_sym_name sname;

ok = cipe_warn_writesymbol(sname);

All other error checking the programmer must provide for explicitly. As the

user enters each parameter, cipepar does its own checking or goes to the error

routine provided. If the error routine returns a -1 for that parameter, cipepar

deletes the entry and does not allow the user to finish the parameter entry
screen until a valid value is entered or the default, if provided, is accepted.

A help routine simply switches on the parameter number and provides help

through printf statements. If the user is in menu mode and requests help the

print statements will appear on the bottom of the parameter entry screen. CLI

mode assumes a very knowledgeable user and does not provide a way for the

user to see the help message provided in a help routine. Figure 2.3 provides

sample help and error routines.

See the User Interface section of Figure 2.1 for an example of the use of

cipedef and cipepar which have been explained. The parameter entry screen

in Figure 2.4 is that produced by the calls to eipedef and cipepar in Figure 2.1.

2.3. Data I/O

CIPE employs a symbolic data representation where a dataset is identified with

a name, and the name and the dataset's attributes (data dimensions, data type,

etc.) are stored in a symbol structure. The symbol structure is declared in the

include file cipeappl.h, discussed in Section 2.1, which may be found in

Appendix A. The use of names and attribute structures allows programmers to
access datasets in a consistent manner and allows users to manipulate datasets

interactively with a minimum of file transactions. Symbols may be created by

associating a file name with a symbol (read A from "filename"), by copying an

existing dataset (B=A), by assigning a set of values (C={2,5}), or by activating

an application (D=func(A)). If a symbol is created by associating a file name

with a symbol, the attributes of the dataset are read from the file header and

stored in the symbol structure. If a symbol is created by copying an existing

data set, the output symbol is assigned the same attributes as the input symbol.

If a symbol is created as the output of a function, it receives its attributes from

the input symbol and the function applied to it. In addition to the symbol name

and symbol attributes, the data associated with a symbol name may also be

stored in the symbol structure. CIPE makes an effort wherever possible to

limit file transactions. Therefore, the data associated with a symbol name is not

stored in a symbol structure until a user's actions require that it be there. As

other attributes of a symbol become useful, they will be described in more

detail.
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int error_routine(), help_routine();

cipepar(error_routine(), help_routine());

error_routine(params,number,value)

struct param *params;

int number;

union {int i; double f; char *s;} value;
{

int error,whereis;

error = 0;

switch(number) {

case 0: error = cipeerror_read._symbol(value.s);
break;

case I: error = cipe_warn write symbol(value.s);
break;

case 2: if (((value.i) % 2) == 0) error = -I;

if (error) printfCmust be odd number");

break;

)
return(error);

help_routine(params,number)

struct param *params;

int number;

{
switch (number) {

case 0:

printfCA valid input symbol must be associated");

printfCwith two dimensional image data.");
break;

case 1:

printfCA valid output symbol must not already exist.");

printfCYou may see if it does by using list from the");

printfCSymboi Menu.");

break;
case 2:

printfCDimensions of the filter window must be odd ");
printfCnumbers.");

break;

Figure 2.3 Sample Help and Error Routines
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I 0:symbol+
l:disp+ 2:rfft2 3:cfft2 4:powerspec I

real symbol

imaginary symbol

power spectrun symbol
fold for display (y/n) L.._

^E=End data entry
^D=HardcopyI xform+ ^P=Abort data entry ^H=Help "q'=Next value ITAB=Next field

Figure 2.4 Parameter Entry Screen
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Since CIPE provides a user with the ability to associate data with a symbol

name, thereby creating a symbol, an applications programmer can assume that a

user will provide a symbol name for input data. As was already explained in

Section 2.2.2, CIPE will automatically check for the existence of the symbol ff

default user input error checking is used, or the programmer can use CIPE

provided routines to check for a symbol's existence explicitly. Knowing that

the symbol exists, the programmer needs only to retrieve it. Symbol retrieval is

accomplished by use of the command, cipe._get_.symbol.

typedef cipe_sym_name char[32];

cipesym_name inputsymbol_name;

struct cipe_symbol *input_symbol_ptr;

input..symbol_ptr = cipe_get_symbol( inputsymboi_name );

The routine, cipe_get._symbol, takes the name of a symbol and returns a

pointer to the symbol of that name. In the event of an error cipe__get symbol
returns NULL.

Output symbol names may be existing or new symbol names. If a user gives a
name for an output symbol, and the name is already in use, the user is warned.

If the user chooses not to heed the warning, the old symbol will be overwritten

with a new one. If an old symbol name is used, its attributes will need to be

modified to reflect the new data it will store. If a new symbol name is used,

the symbol must be created. The creation of symbols is accomplished by the

commands cipe create symbol and cipe create symbol and data. If a

symbol's data area is tobe used in the appl'icationprogram-it is necessary to

create the symbol with the command cipe create symbol and data. This is

typically the situation in application programs which do not-use acoprocessor.

typedef cipesym_name char[32];

cipesym_name

struct cipesymbol
int

output_symbol_name;

*output_ symbol_ptr;

number._oflines, number of samples,

number_of bands, type of clara;

output symbol ptr = cipe create symbol and data(output symbol name,
number-of lines, number of sam_es, number of bands, -
type of data);

The routine cipe__ereate_symbol_and data takes a symbol name, the

dimension in each of three directions of the data to be associated with the

symbol, and a data type, and returns NULL in the event of an error.
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Commonly, the dimensions of data for an output symbol will be the same as

those for the input symbol, though this is not always the case.

The variable typeofdata should be one of following keywords:

CHARTYPE, SHORTTYPE, INTTYPE, FLOATTYPE,

DOUBLETYPE, according to the kind of data the symbol is expected to

store.

If for any reason the symbol's data area is not to be used by the host program,

then the command cipe_¢reate_symbol may be used. This creates space for all

the symbol's attributes but does not create space for the data.

Cipe_create_symbol takes the same attributes as

cipecreate_symboland_data, and also returns NULL on error.

The routines cipe_create_symbol_and data and cipe_ereate_symbol may also

be used to create temporary symbols for a programmer's use. Temporary

symbols may be deleted by the command cipe_delete, symbol.

typedef cipesym_name char[32];

cipesym_name symbol_name;

ok = cipe_deletesymbol(symbol_name);

The routine cipe_delete..symbol takes a symbol name as an argument and
returns -1 if it was unable to delete the symbol. Programmers should only

delete temporary symbols created for their own purposes. Application programs

should not delete user symbols. CIPE provides for users the ability to delete

symbols when they no longer need them.

See the Data I/0 section of Figure 2.1 for an example

cipe_get_symbol and cipe_create_symbol_and_data.

of the use of

2.4. Data Processing

With all the necessary parameters received through the user interface, and the

data I/O complete, only the data processing code remains to be written. CIPE

provides a set of macros to access symbol attributes which the applications

programmer may find useful for writing the data processing code. The

attributes of the symbol structure were assigned values upon creation of the

symbol. Figure 2.5 is a list of the available macros. The symbol attribute

definitions CIPE provides can make it easier for a programmer to write a new

application. For an example of a data processing subroutine which uses the

macros, see the Data Processing section of Figure 2.1.
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CIPEDATA(symb_ptr)

CIPENAME(symb_ptr)

CIPEFILE(symb_ptr)

CIPENDIM(symb_ptr)

CIPESB(symb._ptr)

CIPENB(symb_ptr)

CIPESL(symb_ptr)

CIPENL(symb_ptr)

CIPESS(symb_ptr)

CIPENS(symb_ptr)

CIPEDATATYPE(symb_ptr)

CIPEELEMENTSIZE(symb_ptr)

CIPENUMELEMENT(symb_ptr)

CIPEDATASIZE(symb_ptr)

Pointer to the data area of the symbol

Pointer to the name of the symbol

Pointer to the name of the file (if any)

associated with the symbol

Number of dimensions of the data

Starting band of the data

Number of bands in the data

Starting line of the data

Number of lines in the data

Starting sample of the data

Number of samples in the data

Type of data elements, e.g. INT_TYPE,
CHAR TYPE

Size ofan element of the data

Total number of data elements

Total size of the data area

Figure 2.5 Symbol Attribute Definitions

2.5. Compiling

A sample makefile for an application program without a coprocessor has been

provided below in Figure 2.6. The CIPEDIR given is the location of CIPE as of

the writing of this manual.

CC=cc

CIPEDIR=/judy/ufs/cipe

CIPE = $(CIPEDIR)/cipe

LINK= $(CIPEDIR)/appl/CPLINK

all: functionl

functionl: functionl.o subfunction.o $(CIPE)

$(LINK) $(CIPE) functionl.o subfunction.o

Figure 2.6 Application Without a Coprocessor Makefile
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3. PROGRAMS WITH A COPROCESSOR

Programs that run with the assistance of a coprocessor require two coordinating

pieces of code to be written, one to run in the host, and one to run in the

coprocessor. As the hypercube is the only attached processor fully

implemented in CIPE, it is the only one which will be described here. CIPE's

programming environment is designed so that the host module interacts with

the hypercube module as a main routine interacts with a subroutine in generic

programming. In other words, the host module passes the data and parameters

to the hypercube module, and the hypercube module processes the data and

returns the results.

3.1. Host Module

The host module of an application program with a coprocessor is identical to

the application program without a coprocessor with respect to user interface and

symbol retrieval/creation. Data processing will be given to the hypercube

module, and the host module will be responsible for transferring the data and

parameters to the hypercube module. Appendix E provides a reference for all

host resident executive subroutines.

3.1.1. User Interface

The user interface is identical in application programs with and without

coprocessors. For this reason, no discussion of the user interface is provided

here. Refer to Section 2.2 for further information.

3.1.2. Data I/O

Programming using a hypercube as a coprocessor requires two types of data

I/O: symbol creation and retrieval in the host, and data distribution and retrieval

with the hypercube. Input symbols may be retrieved by using

eipe_get_symbol, and output symbols may be created by using

cipecreatesymbol or cipe_createsymboland_data. Explanations and

examples of the use of these routines have been provided in Section 2.3.

Applications with a coprocessor, unlike those without, typically do not need a

symbol to have data space in the host since the data processing will be done

within the coprocessor. Therefore, it will be most efficient to create a symbol

using eipecreate_symbol instead of cipe_create_symbol_and data.

In order to download data to the hypercube a programmer must choose a

decomposition for the data which is appropriate for the problem being solved.

Seven data types are supported in CIPE; they are listed below in Figure 3.1

with the keywords necessary to achieve them.
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BCAST DIST

HORIZ DIST

HORIZ OVERLAP

GRID I)IST

GRID-OVERLAP

VERT DIST

VERT-OVERLAP

CUSTOM DIST

A broadcast distribution

A horizontal distribution

A horizontal distribution with overlap
A grid distribution

A grid distribution with overlap
A vertical distribution

A vertical distribution with overlap

A customized distribution, anything goes!

Figure 3.1 Distribution Type Keywords

For all symbols which will be passed to the hypercube module, the programmer
must choose a distribution. For all but the CUSTOM DIST this is

accomplished by a call to cipe_composestandard_loadmap_ There are a

variable number of arguments to this routine, depending on the chosen

distribution. The routine returns -1 on error. The call syntax and its
arguments' declarations are illustrated below.

struct cipesymbol *symbol_ptr;

ok = cipe__composestandard_loadmap(symbol_ptr, distribution, ...);

If a BCAST_DIST, HORIZDIST, GRID_DIST, or VERT DIST is desired

cipe_composestandard_loadmap requires only two arguments. The first

argument, symbol_ptr, can be obtained by a call to cipe_get_symboi,

cipe_create__symbol, or cipecreate_symbol_and data (See Section 2.3). The

argument distribution must be one of the previously given distribution type
keywords. A request for a horizontal distribution might look as follows.

struct cipe__symboi *symbol_ptr;

ok = cipe_composestandard_loadmap(symboi_ptr, HORIZ_DIST);

If an overlapped distribution of any type is requested it is necessary to specify
the number of lines of overlap in the appropriate planes. For a

HORIZ_OVERLAP one integer is expected following the distribution to

represent the number of lines of overlap in the vertical plane. There is no way
of requesting a different number of lines of overlap up and down. A valid

request for a HORIZOVERLAP, with three lines of overlap up and down
might look like"
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int ok;

struct cipesymbol *symbol_ptr;

ok = cipe_composestandard_loadmap(symbol_ptr, HORIZ_OVERLAP, 3);

Similarly, a GRID_OVERLAP requires values for the number of lines of

overlap in vertical and horizontal planes, and a VERT_OVERLAP requires

values for the number of lines of overlap in the horizontal plane.

A custom distribution allows a programmer to create any distribution that CIPE

has not provided. The creation of a CUSTOM_DIST requires the use of the

routine cipecompose_custom_loadmap. One call must be made to

cipe__eompose_eustom__loadmap for each node of the hypercube. The routine

requires a programmer to know exactly what data he/she wants in each node.

struct cipesymbol symbol_ptr;

int procnum;

int startingline, starting_sample, starting_band, number of lines,

number of samples, number of bands;

ok = cipe_composecustom_loadmap(symbol_ptr, procnum, starting_line,

starting_sample, starting_band, number of lines, number of samples,

number of bands):

The first argument, symbol_ptr, can be obtained by a call to cipe_get._symbol,

cipe_create_symbol, or cipecreate_symbol_and_data. The second argument,

procnum, should be the processor number whose data region is being specified.

The last six arguments define the data region for the processor.

3.1.3. Parameter Passing and Node Module Initiation

CIPE provides a programmer a routine, cipecube_param_def, to define which

parameters will be needed for data processing within the coprocessor. The

arguments required allow CIPE to reduce the tasks a programmer must do by

performing them for him/her.

int param_num, size;

cipe_cube_param_def(param_num, param_type, direction, size, storage_ptr);

The argument param_num must be an integer between 1 and 32. For each

activation of a hypercube module no two parameters may have the same

param_num. CIPE requires a programmer to label the first parameter 1 and

then increase param_num by one for each consecutive call to
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cipecube_param_def.

CIPE provides two keywords SYMBOL PARAM and
m

NON_SYMBOL_PARAM for a programmer to specify param_type. If the

parameter being passed is a symbol, the keyword SYMBOL PARAM should
m

be used. Otherwise, the keyword NON SYMBOL PARAM should be used.
m

The direction of a parameter may be specified with the keywords INPUT,

OUTPUT, or BOTH. INPUT indicates that a parameter will be used only as

input to the data processing routine. OUTPUT indicates the parameter should

have a value only after the data processing is complete. In this case a value

will be sent back from each node of the hypercube after data processing. CIPE

has no way of verifying that the programmer has provided sufficient space for

this to happen. BOTH should be used to provide a distinct value to each node

of the hypercube for input and to receive a distinct value back from each node

of the hypercube. The BOTH option is available only for
NON SYMBOL PARAMs.

The size of the parameter, in bytes, should be passed as the argument size.

The argument storage_ptr is a pointer to the parameter being defined.

A programmer requests activation of a host module's corresponding hypercube

module by the command, cipe_cube_execute_module. It takes as its only

argument the name of the hypercube module that is to be run. An example call
to cipe_cube__execute_module might look like:

ok = cipecubeexecute_module("/judy/ufs/cipe/appl/node_module");

When a programmer requests activation of a host module's corresponding

hypercube module CIPE completes several tasks for the programmer. CIPE

first checks to be certain that the programmer has chosen a data decomposition

for symbols. It then creates space in the hypercube for each of the parameters

specified. The load maps of all symbols are sent to the nodes. The data of

input symbols is sent to the nodes. The values of non-symbol input parameters

are sent to the nodes. And the values of non-symbol output parameters are

uploaded after execution of the hypercube module. If any errors occur in these

processes cipecube_execute__module returns a -1. A sample host module is
shown in Figure 3.2.

3.1.4. Compiling and Linking

The process of compiling and linking a host module is nearly identical to the

process required for an application program without a coprocessor, explained in

Section 2.5. The only difference is that programs which run with a coprocessor

need to be compiled with ccc instead of cc in order to resolve hypercube

related subroutine calls. See the sample makefile in Figure 3.3.
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******************************* INCLUDE FILES ********************************* /

#include <stdio.h>

#include <ctypo.h>
#include "¢ipeappl.h"

powerspecO

{
cipe_sym_name input_real, input_imagi, output;
int p;

char option[3];

powerspec

p= 1;
• . tl .

s_cpy(opuon, y ),

******************************* USER INTERFACE ********************************/

cipedef (p++, "real symbol ", INPUT_SYMBOL, input_real,

sizeof(cipe_sym_name), REQ);

cipedef (p++, "imaginary symbol ", INPUT_SYMBOL, input_imagi,

sizeof(cipe_sym_name), REQ);
cipedef (p++, "power specmm symbol ", OUTPUT_SYMBOL, output,

sizeof(cipe_sym_name), REQ);

cipedef (p++, "fold for display (y/n)", STRING, option,

sizeof(option), DEFAULT);

if (cipepar(NULL, NULL)) return(-l);

it (sl_cmp(option,"y")==O)
cube_power_spec(input_real,irrput_im agi,outpu t, l );

else

cube_power_spec(input_real,input_imagi,output,0);
}

cube_.power_spec (real,imagi,power, disp)

cipe sym_name real,imagi,power,

hat disp;

{
struct cipe_symbol *realp, *imagip, *powerp;

float *power_disp_data, "131;

********************************** DATA I/0 ***********************************/

realp = ¢ipe_get_symbol(real);
imagip = cipe_get_symbol(imagi);
powerp = cipe_create_symbol(power,CIPENL(realp),CIPENS(realp),l,FLOAT_TYPE);

cipe_compose standard loadmap(realp, HORl'Z_DIST);
cipe compose-standard-lo admap(imagip, HORIZ_DIST);

cipe_compose-standard_loadmap(powerp.HORIZ_DIST);

cipe_cube_param def(1,SYMBOL PARAM,INPUT,sizeof(cipe sym_name),realp);

cipe_cube_param-def(2,S YMBOL-PARAM,iNPUT,sizeof(cipe_sym_name),imagip);

cipe_cube_param-def(3 ,S YMBOL_-PARAM,OuTPuT,sizeof(cipe_sym_name),powerp);

******************************** DATA PROCESSING ****************************** /

cipe_cube_execute_module("/judy/ufs/cipe/appl/xfonrffelt/power_spec");

cube power_spec

if (disp) {
cipe_cube read_data(powerp);
cipe delete_symbol from cube(powerp);
power disp_data ---(float *)malloc(CIPEDATASIZE(powerp));
ff (power_disp_data _ NULL) {

prinffCpower_disp_data malloc failure_n");
return(-1);

pl = (float *)CIPEDATA(powerp);
pl[0] = 0.0; /* turn off the sum for better contrast * /

fold_image (C1PEDATA(powerp),power_disp_data,CIPENL(powerp));
free (CIPEDATA(powerp));
CIPEDATA(powerp) = (unsigned char *)powerdisp_data;

...cube__powerspec

Figure 3.2 Host Module, Application With a Coprocessor
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CC=ccc

CIPEDIR=/judy/ufs/cipe

CIPE = $(CIPEDIR)/cipe

LINK= $(CIPEDIR)/appl/CPLINK

all: functionl

functionl: functionl.o subfunction.o $(CIPE)

$(LINK) $(CIPE) functionl.o subfunction.o

Figure 3.3 Application With a Coprocessor Makefile

3.2. Hypercube Module

The hypercube module of a CIPE application needs to accomplish two tasks,

retrieving the data processing parameters defined by the host module and

processing the data. Appendix F provides a reference for all hypercube
resident executive subroutines.

3.2.1. Include Files

All hypercube modules of CIPE application programs must include the file

eltappl.h, found in /usr/local/include. This file provides the necessary

information to use CIPE-provided routines and definitions. A copy of this file

has been include in Appendix B for programmer reference. As in the host

module, any other include files are at the programmer's discretion. See the

Include Files section of Figure 3.5 for an example.

3.2.2. Parameter Retrieval

When the host module requests activation of the hypercube module the

parameters needed for data processing are sent to a monitor in the hypercube.
It is necessary for the hypercube module to request the retrieval of those

parameters from the hypercube monitor. Application parameters necessary for

data processing may be retrieved by using the command elt_get_param.

int param_num;

elt_get_param(param_num,address_ofptr);

The first argument, param_num, is a parameter number. For a given

parameter, the programmer needs to give the same number in the host and

hypercube modules in order to retrieve the parameter.
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The second argument to elt_get_param, address_ofptr, is an address of a

pointer. When the data processing parameters were sent to the hypercube

monitor, the monitor created space for them. Rather than creating additional

space, elt_get_param stores the address of the parameter requested in

address_of_ptr so the application can use the parameter where it resides.

3.2.3. Data Processing

As in the host, macros have been defined for use within the hypercube to assist

the programmer in accessing symbol attributes. See Figure 3.4 for a list of
these macros.

DATA(symbol)

NAME(symbol)

DATATYPE(symbol)

SB(symbol)

NB(symbol)

SL(symbol)

NL(symbol)

SS(symbol)

NS(symbol)

ELEMENTSIZE(symboi)

NUMELEMENTS (symbol)

DATASIZE(symbol)

Data are of the symbol

Name of the symbol

Type of data elements, e.g. INTTYPE,

CHAR TYPE

Starting band of data in the node
Number of bands of data in the node

Starting line of data in the node
Number of lines of data in the node

Starting sample of data in the node

Number of samples of data in the node

Size of an element of the data

Total number of data elements in the node

Total size of data in the node

Figure 3.4 Hypercube Symbol Attribute Definitions

The programmer can also create temporary symbols for his/her use. Symbols

may be created by the commands elt_ereate_symbol and

elt_ereate__symbol_and data. The commands take the same arguments as their

counterparts in the host and function similarly. The routine elt_create_symboi

creates a symbol with no data space. The routine

elt_ereate_symboi_and_data creates a symbol and data space. The former,

elt_create__symbol, is not likely to be used since a symbol is usually created

temporarily in order to use its data space. Again, similar to the host, a

temporary symbol may be deleted with the command, elt_delete_symbol. A

programmer should only delete temporary symbols created for their own

purposes. User created symbols should not be deleted but left for the user to

determine when they should be deleted.

Very little should be required to make a data processing subroutine which runs

with CIPE in the host run within the hypercube. All that should be required is

to change any symbol attribute macros which were used to their equivalent

macros within the cube. A sample hypercube module is shown in Figure 3.5.
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****************************** INCLUDE FILES ********************************** /
#include <sulio.h>

#Include <crypt.h>

#Include "ekappl.h"

power()
{

struct elt._symbol*re.alp,*imagip, *powerp;
Int call w_._power specO;

*************************** PARAMETER RETRIEVAL *******************************/

elt_get_param( 1,&reatp);
eltget_param(2,&imagip);

elt_get_param(3,&powerp);

prinffC%s %s %s'm".NAME(realp).NAME(imagip).NAME(powerp));

***************************** DATA PROCESSING *********************************/
power_spec(DATA(realp). DATA(imagi), DATA(POwer), NL(readp), NS(realp));

power

power_spec(real,imagi,power.al, ns)

float *real.*imagi, *power;
lut nl.ns;

[
register float *pl,*p2, *p3;
lnt i;

double temp;

pl = real;

p2 = imagi:
p3 = power;

for (i=ff, i<nl*ns; i++) {

temp = (*pl * *pl) + (*p2 * *p2);
• p3++ = temp;

p 1++;
p2++;

}

powerspec

Figure 3.5 Hypercube Module, Application With a Coprocessor
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3.2.4. Data Processing Using the Weitek

To use the Weitek floating point processors for data processing requires a little

more work. Using the Weitek ultimately requires three separate files, one each

to run in the host, the hypercube's data processor, and the hypercube's Weitek

processor. The host file does not need to change to call the Weitek. The data

processor code will be the code described in previous sections as the hypercube

module, but it will now lack the subroutine that actually does the data

processing. The data processing subroutine itself now needs to be placed in a
third file which will be run in the Weitek.

The Weitek file needs to include the file wtkdefs.h. Arguments are passed from

the hypercube's standard data processor to the Weitek via an argument list.

For this reason a small subroutine must be created to call the data processing

subroutine and pass the pieces of the argument list to the data processing

subroutine as it is expecting them. For the following data processing

subroutine and arguments:

filtsub(sin,sout,window,weight)

struct eltsymbol *sin, *sout;

int *weight, *window;

the following calling subroutine would have to be created:

call flit sub(arg)

struct {

struct elt_symbol *sin, *sout;

int *weight, *window;

} *arg;

{
filtsub(arg->sin, arg->sout, arg->weight, arg->window);

}

In the data processor code, the calling subroutine would have to be declared as

an integer, and then it would have to be called, with all of its parameters, by

the use of the command call wtk. The additions to the data processor code for

the previous Weitek example would look like:

int call fir sub();

call_wtk(call flit sub, sin, sout, window, weight);

The sample data processor and Weitek code may be found in Figures 3.6 and
3.7.
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****************************** INCLUDE FILES ********************************** /
#Include <sulio.h>

#include <c_e.h>
#include "eltappl.h"

pow_O
(

struct eli_symbol *re.alp, *imagip, *powerp;
Int cail_wtk._power_specO;

*************************** PARAMETER RETRIEVAL ******************************* /

elt_get_param(1.&realp);
elt_get_param(2.&imagip);

elt_get_param(3,&powerp);

prinff("%s %s %s_n".NAME(realp).NAME(imagip).NAME(powerp));

***************************** DATA PROCESSING *********************************/

callwtk(call_wtk_.powc__spec,DATA(realp),DATA(imagip),DATA(powerp),
NI.,(realp),NS(realp));

}

power

Figure 3.6 Hypercube Module, Data Processor Code Calling Weitek
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call wtk 9ower_spec(arg)
struct {

float *array;

float *brray;

float *crray;

int nl;
int ns;

} *arg;

power_spec(arg->array,arg->brray,arg->crray,arg->nl,arg->ns);

power_spec(real,imagi,power,nl, ns)
float *real,*imagi, *power;
lnt nl,ns;

{
register float *pl,*p2, *p3;
lnt i;

double temp;

pl = real;

p2 = imagi;

p3 = power;
for (i=0; i<nl*ns; i++) {

temp = (*pl * *pl) + (*p2 * *p2);

• p3++ = temp;

pl++;

p2++;

call_wtk_power_spec

power_spec

Figure 3.7 Hypercube Module, Weitek Code
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3.2.5. Compiling and Linking

The hypercube module shown in Figure 3.5, which does not use the Weitek,

may be compiled and linked with the following makefile shown in Figure 3.8.
It uses cc68 which links in the necessary hypercube libraries. The location

specified in CIPEDIR is the location of CIPE as of the writing of this manual.

As stated earlier, CIPE is currently implemented with a Sun-4 as a host to the

hypercube. Cross-compilers on the Sun-4 enable it to generate 68020/Sun-3
code to run in the hypercube.

CC = cc68

CIPEDIR =/judy/ufs/cipe

CIPE = $(CIPEDIR)/cipe

ELT MONITOR = $(CIPEDIR)/cube/elt_monitor/elt mon
LINI_ = $(CIPEDIR)/appl/ELTLINK
TARGET ARCH = -sun3

CFLAGS = -g

functionl: functionl.o subfunction.o $(ELT MONITOR)

$(LINK) -v -e entryname -o outputname

$(ELT_MONITOR) functionl.o subfunction.o

Figure 3.8 Hypercube Module Without Weitek Makefile

The data processor and Weitek modules shown in Figure 3.6 and 3.7 may be

compiled and linked with the following makefile shown in Figure 3.9. It uses

cc68 to compile the data processor code and w68 to compile the Weitek code.
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CC = cc68

W68 = w68

CIPEDIR =/judy/ufs/cipe

CIPE = $(CIPEDIR)/cipe

ELT MONITOR = $(CIPEDIR)/cube/eit_monitor/elt_mon

LINI_ = $(CIPEDIR)/appl/ELTLINK

TARGET ARCH = -sun3

CFLAGS = -g
WFLAGS = -O

dpfunction: dpfunction.o wtk_function.o $(ELT_MONITOR)

$(LINK) -v -e entryname -o outputname

$(ELT_MONITOR) dpfunction.o wtk_function.o

wtkfunction.o: wtkfunction.c

$(W68) -c $(WFLAGS) wtkfunction.c

Figure 3.9 Hypercube Module With Weitek Makefile
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4. PROGRAMS WITH AND WITHOUT A COPROCESSOR

It may serve a programmer best to combine some of the information provided

and write one program which can run either with or without a coprocessor.

Figure 4.1 accomplishes the same tasks as the sample programs in both Figures
2.1 and 3.2.

The only new piece of information necessary is the use of the definition
COPROCESSOR to determine if the user has activated the cube. If the cube

is activated the application assumes it is to be used and calls the same node

program as that in Figure 3.5. If the cube has not been activated the

application is run entirely in the host.

******************************* INCLUDE FILES ********************************* /
#Include <stdio.h>

#include <ctypeah>
#include "cipeappl.h"

powerspec0

{
cipe_sym_name input_real, input_irnagi, output;
int p;
char optlon[3];

powerspec

p= 1;
strcpy(option,"y");

******************************* USER INTERFACE ********************************/

cipedef (p++, "real symbol ", INPUT_SYMBOL, input_real,

slzeof(cipe_sym_name), REQ);

cipedef (p++, "imaginary symbol ", INPUT_SYMBOL, inputimagi,

slzeof(cipe_sym_name), REQ);

cipedef (p++, "power specmm symbol ", OUTPUT_SYMBOL, output,
slzeof(cipe_sym_name), REQ);

cipedef (,p++, "fold for display (y/h)", STRING, option_
slzeof(option), DEFAULT);

if (cipepar(NULL, NULL)) return(-1);

if (COPROCESSOR _--- CUBE KWD)
if (strcmp(option,"y")==0)-

cube_power_spec(input_real,input_imagi,output, 1);
else

cube_.power_spec(inputreal,input_imagi,output,0);
else

If (strcmp(option,"y")==-0)

host__power_spec(inpu t_real,input_imagi,output, 1);
else

host__power_spec(input_real,input_imagi,output,0);

hos t_.po wer_spec(input_real,input_imagi,output,disp)
cipe_sym_name *input_real,*input_imagi,*output;
lnt disp;

{
struct cipe_symbol *sin_real, *sin_imagi, *sout;
float *power_disp_data, *pl;

********************************* DATA 1/(9 ************************************ /

sin real = eipe_get_symbol (input_real);
sin-imagi = cipe_get_symbol (input_imagi);

sout = cipe_create_symbol and data(output,
CI PENL(sin_real),CIPENS (sin_real), 1,FLOAT_TYPE);

host_power_spec

Figure 4.1 Host Module, Application With and Without a Coprocessor

PRECEDING PAGE _' A,,,,,,' l_i.._NI jENIjON_'I'I'Y'_
_, .... _:. NOT FILMED
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******************************** DATA PROCESSING ****************************** /

power_spec(CIPEDATA(sin_real),CIPEDATA(sin_imagi).CIPEDATA(sout),
CIPENL(sin_real),CIPENS (sin_real));

if (disp) I

power_disp_data = (float *)maUoc(CIPEDATASIZE(sout));
if (power_disp_data _ NULL) {

prinff("power_disp_data malloc failurekn");
return(-1);

I
pl = (float *)CIPEDATA(sout);

pl[0] = 0.0; 1" turn off the sum for better contrast */
fold_image (CIPEDATA(sout).power_disp_data, CIPENL(sout));
free (CIPEDATA(sout));

CIPEDATA(sout) = (unsigned char *)power_disp_data;

cube_powerspec(real,imagi,power,disp)
eipe_sym_name real,imagi,power;

int disp;
{

struct cipe_symbol *re.alp, *imagip, *powerp;
float *power_disp_data, *pl;

********************************** DATA I/0 *********************************** [

realp = cipe_get_symbol(real);

imagip = cipe_get_symbol(imagi);

powerp = cipe_create_symbol(power,CIPENL(realp),CIPENS(realp),l,FLOAT_TYPE);

cipe_compose_standard_loadmap(realp,HORIZ_DIST);

cipe_compose_standard_loadmap(imagip, HORIZ_DIST);
cipe_compose_standard_loadmap(powerp, HORIZ_DIST);

cipe_cube_param_def( 1,S YMBOL_PARAM,INPUT,sizeof(cipe_sym_name),realp);

cipe_cube_param_def(2,S YM BOL_PARAM,INPUT,sizeoffcipe_sym_name),imagip);
cipe_cube_param_def(3,S YM BOL_PARAM,OUTPUT,slzeof(cipe_sym_name),powerp);

******************************** DATA PROCESSING ******************************/

cipe_cube_execute_module("appl/x form/elt/power_spec");

if (disp) {

cipe_cube_read_data(powerp);
cipe_delete_symbol_from_cube(powerp);
power_disp_data = (float *)malloc(CIPEDATASIZE(powerp));

It (power_disp_data _ NULL) {

prinffCpower_disp_data malloc failure_a");
return(-1);

I
pl = (float *)CIPEDATA(powerp);
pl[0] = 0.0; /* turn off the sum for better contrast * /

fold_image (CIPEDATA(powerp),power_disp_data,CIPENL(powerp));
free (CIPEDATA(powerp));

CIPEDATA(powerp) = (unsigned char *)power_disp_data;

•..host..powerspec

cube_power_spec

Figure 4.1 (contd)
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5. TESTING PROGRAMS IN CIPE

A programmer may test his/her application programs in either CLI or menu
mode. In CLI mode a user needs to specify a pathname to a function, and then

the arguments required by the function. A CLI call for a filter function might

look like:

/judy/ufs/winnie/cipe/appl/filter(A,B,3,3, { 1,1,1,1,1,1,1,1,1 });

In menu mode a programmer needs to choose the Bltin option from the top

level menu, and myfune from the following menu. The option myfunc will

prompt the programmer for an application with full pathname. When this has

been given the programmer will receive the parameter entry screens provided

for in his/her application.

If a programmer wants to repeatedly test a new application it might be useful to

temporarily add the function to menu or CLI mode rather than having to always

type a full path name. A function may be temporarily added to menu mode by

choosing the Bltin option from the top level menu and add_func from the

following menu. The added function may then be accessed by once again

choosing the Bitin option from the top level menu, and then choosing myfunc

and providing a function name without a full pathname. A function may be

temporarily added to CLI mode by the command:

" " .... h .... hel " •add func( function , pat , P ),

Once added the function may be accessed like any other CLI function by

simply using the function name and arguments. Temporary additions to CLI

mode or menu mode endure only for the length of the CIPE session.

If a programmer will need to continuously test an application in distinct CIPE
sessions it may be most convenient to keep a personal menu configuration file

and function dictionary so temporary additions to CLI or menu mode do not

have to be added during each CIPE session. Copies of CIPE's default versions

of these files are provided in Appendices C and D. The functions referred to

by a programmer's menu configuration file must be present in the dictionary.
For detailed information about these files refer to the CIPE User's Manual.

The setup option in CIPE's top level menu allows the programmer to specify

the locations of personal menu configuration and function dictionary files. For

the new menu configuration to be used the programmer must exit to CLI mode

and re-enter the menu mode by typing menu.

An applications programmer may provide traces in code by using the keyword
APPL TRACE. APPLTRACE may be turned on by typing the following in

CLI mode:
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turn on appl trace

In menu mode, the setup option in the top level menu provides an opportunity
to turn APPL TRACE on.

B

This manual has attempted to provide all the information necessary for a

programmer to write and test applications to run with CIPE. Appendices of

application include files, cipeappl.h and eltappl.h, a menu configuration file, a

function dictionary, and programmer callable routines have been provided for
programmer reference.
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#ifndefCIPEAPPLH
#define CIPEAPPL-H

/* data type definitions */
#ifndef DATATYPE H
#define DATATYPE-H

#define UNDEF TYPE 0
#define CHAR TYPE 1
#define BYTE-TYPE 1
#define SHORT TYPE 2

#define INT TY_PE 3
#define FLOAT TYPE 4
#define DOUBLE TYPE 5
#define BOOL T'TPE 6
#define STRING TYPE 7
#endif DATATYPE H

/* symbol structure and its definitions */
#ifndef SYMBOL H
#define SYMBOL-H
#define CIPEFILESIZE 45
#define CIPENAMESIZE 32
#define FUNCNAMESIZE 45

typedef
typedef
typedef

char cipe file name[CIPEFILESIZE];
char cipe_sym_name [CIPENAMESIZE];
char cipe func name[FUNCNAMESIZE];

struct loadmap {
int loadtype;
int sb;
int nb;
int sl;
int nl;
int ss;
int ns;

};

struct cipe_symbol {
unsigned char *data;

cipe_sym_name name;
cipe file name file;
int ndim;
mt sb;
mt nb;
mt sl;
mt nl;
mt ss;
mt ns;

mt datatype;
mt dataloc;
mt loadtype;

struct loadmap *cubeload;
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structloadmap*oldloadmap;
1;

extem int cipe_size[];

/* macros for use with pointers to symbol table entries */
#define CIPEDATA(s) ((s)->data)
#define CIPENAME(s)
#define CIPEFILE(s)
#define CIPENDIM(s)
#define CIPESB(s)
#define CIPENB(s)
#define CIPESL(s)
#define CIPENL(s)
#define CIPESS(s)
#define CIPENS(s)
#define CIPEDATATYPE(s)
#define CIPEELEMENTSIZE(s)
#define CIPENUMELEMENTS(s)
#define CIPEDATASIZE(s)

((s)->name)
((s)->file)
((s)->ndim)
((s)->sb)
((s) ->nb)
((s)->sl)
((s)->nl)
((s)->ss)
((s)->ns)

((s)->datatype)

cipe_size[CIPEDATATYPE(s)]
(CIPENL(s)* CIPENS(s)*CIPENB(s))
(CIPENUMELEMENTS(s)* CIPEELEMENTSIZE(s))

/* function types */
extem struct cipe_symbol *cipe_create_symbol0;
extern struct cipe_symbol *cipe_create_symbol_and_data0;
extern struct cipe_symbol *cipe_get_symbol0;
#endif SYMBOL H

m

/* data distribution types */
#ifndef ELT DATA H
#define ELT-DATA-H

#define NOT DIST 0
#define BCAST DIST 1
#define HORIZ-DIST 2
#define VERT I)IST 3
#define GRID-DIST 4
#define HORIZ OVERLAP 5
#define GRID OVERLAP 6
#define VERT- OVERLAP 7
#define CUSTOM DIST 8

/* data not in cube */
/* broadcast - all nodes have a copy */
/* row major decomposition */
/* column major decomposition */

/* grid distribution */
/* horizontal distribution with overlap */
/* grid distribution with overlap */
/* vertical distribution with overlap */
/* a custom distribution */

#endif ELT DATA H
m

/* cube parameter definitions */
#ifndef CUBEPARAM H
#define CUBEPARAM-H

#define MAX PARAM COUNT 32

struct appl_param { -

int param_count;
struct {

int type;
int direction;

int length;
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};

unsignedchar*ptr;
)param [MAX_PARAM_COUNT];

/*type */
#define NON SYMBOL PAR.AM
#define SYMBOL PAtLEdd

/* direction */
#define OUTPUT 0
#define INPUT 1
#define BOTH 2

#endif CUBEPARAM H

/* user interface parameter definitions */
#ifndef PARAM TYPE H
#define PARAM-TYPE-H

#define INPUT SYMBOL (-1)
#define OUTPI.TT SYMBOL (-2)
#define INT ARRAY (-3)
#define FLOAT ARRAY (-4)
#define DOUBLE_ARRAY (-5)
#define CHAR 1
#define SHORT 2

#define INT 3
#define FLOAT 4
#define DOUBLE 5
#define BOOL 6
#define STRING 7
#define KEYWORD 8

#define REQ
#define DEFAULT
#define NOHELP
#define NOECHK
#endif PARAM TYPE H

(-264)
(-262)
NULL
NULL

/* cipe attribute definitions */
#ifndef CIPE H

/* system attributes */
extem struct {

char *name;

int value_type;
int value;
int access;

} cipe_attr[];

#define COPROCESSOR ATYR
#define CUBE DIMENSION A'ITR
#define DISPLAY DEVICE _,TI'R

0
1

0
1
2
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#defineMOUSEATTR
#defineDEBUG-LEVELA'Iq'R
#defineAPPLTRACE,('Iq_
#defineMENI_MODE-ATI'R

m

#define COPROCESSOR
#define CUBE DIMENSION
#define DISPLAY DEVICE

#define MOUSE
#define DEBUG LEVEL
#define APPL TRACE
#define MENU MODE
#define CUBE -KWD
#define GAPP-KWD
#define NODISPLAYDEVICE
#define IVAS0 KWD
#define IVAS1-KWD
#define ORBIT-Y512 KWD
#define ORBITY800-KWD
#define JUDY512 K-WD
#define JUDY800-KWD

#endif

/* cube related global variables */
extem int doc,nproc;
#endif CIPEAPPL H

3
5
12
13

cipe_attr[COPROCESSOR_A'Iq'R].value
cipe_attr[CUBE_DIMENSION_A'VYR].value
cipe_attr[DISPLAY_DEVICE_ATI'R].value

cipe_attr[MOUSE_ATrR].value
cipe_attr[DEBUG_LEVEL A'VI'Rl.value
cipe_attr[APPLTRACE A'ITR].value
cipe_attr[MENU_M ODE-_ATI'RI .value
1
2
3
4

5
6
7
8
9
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#ifndefELT APPL H
#define ELT-APPL-H

#include <cipe.h>/* cipe_attr and APPL TRACE
#define APPL TRACE

/* data type definitions */
#ifndef DATATYPE H
#define DATATYPE-H

m

#define UNDEF TYPE
#define CHAR TYPE
#define SHORT TYPE
#define INT TYPE
#define FLOAT TYPE
#define DOUBLE TYPE
#define BOOL Tx_'PE
#define STRING TYPE

#endif DATATYPE H

ATTR definitions here */
cipe_attr[APPL TRACE ATFR] .value

0
1
2
3
4
5
6
7

/* eltsymbol structure and its field definitions */

#define NAMESIZE 32 /* max length of symbol name */

#ifndef ELT SYMBOL H
#define ELT_SYMB OL-H

typedef char eltname[/_AMESIZE]; /* type of symbol names */

struct elt_loadmap{
int loadtype;
int sb;
int nb;
int sl;
int nl;
int ss;
int ns;

J;

/* load type if a simple type, -1 if unknown */
/* starting band */
/* number of bands */
/* starting line */

/* number of lines per band*/
/* starting sample */

/* number of samples per line */

struct elt_symbol {
unsigned char *data;
eltname name;
int global;
int datatype;

struct eltloadmap loadmap;
struct elt_loadmap oldloadmap;

1;

/* pointer to data area */
/* symbol name */

/* 1 if symbol is global, 0 if local */
/* data type code */
/* distribution pattern */
/* distribution pattern */

/* macros for use with pointers to symbol table entries */
#define DATA(s) ((s)->data)
#define NAME(s) ((s)->name)
#define DATATYPE(s) ((s)->datatype)

#define LOADTYPE(s) ((s)->loadmap.loadtype)
#define SB(s) ((s)->loadmap.sb)
#define NB(s) ((s)->loadmap.nb)
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#defineSL(s) ((s)->loadmap.sl)
#defineNL(s) ((s)->loadmap.nl)
#defineSS(s) ((s)->loadmap.ss)
#defineNS(s) ((s)->loadmap.ns)
#defineELEMENTSIZE(s) (elt_elementsize[DATATYPE(s)])
#defineNUMELEMENTS(s)(NB(s)*NL(s)*NS(s))
#defineDATASIZE(s) (NUMELEMENTS(s)*ELEMENTSIZE(s))

#endifELT SYMBOL H

#ifndefCUBEPARAM H
#defineCUBE-PARAM-H
#defineMAX _'ARAM-COUNT
structappl__pa-/am{ -

int param_count;
struct{

int type;
int direction;
int length;
unsignedchar*ptr,

};

32

}param[MAX_PARAM_COUNT];

/* type */
#define NON SYMBOL PARAM 0
#define SYMBOL PAR,K2vl 1

m

/* direction */
#define OUTPUT 0
#define INPUT 1
#define BOTH 2
#endif CUBE PARAM H

#endif ELT APPL H

extem int doc, procnum, nproc;
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MENUmainmenu

setup/setup
Symbol/Symbol
Disp/Display
MssDisp/Mssdisp
Builtin/Builtin
X form/X form
Filter/Filtgr
Restore/Restore
Geom/Geom
Stretch/Hstretch
END

MENU Builtin

Symbol/Symbol
Disp/Display

add_func/appl
myfunc/appl
typecast/appl
pattem/appl
matlVappl
stat/appl
Matrix/Matrix
END

MENU Matrix

matop/appl
cmatop/appl
constop/appl
END

MENU Xform

Symbol/Symbol
Disp/Display
rfft2/appl
cfft2/appl
powerspec/appl
END

MENU Filter

Symbol/Symbol
Disp/Display
kemel/appl
spfilter/appl
freqfilter/appl
medfilter/appl
prep/appl
END

MENU Geom

Symbol/Symbol
Disp/Display

surfit/appl
gentie/appl
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fiept/appl
rotate/appl
scale/appl
END

MENU Restore

Symbol/Symbol
Disp/Display
feature_psf/appl
image_.psf/appl
kemel/appl
invfilter/appl
ME/appl
ML/appl
END

MENU Hstretch

Symbol/Symbol

Disp/Display
perc/appl
END

MENU Mssdisp
Symbol/Symbol
Stretch/Stretch

mssdraw/mssdisp
mssplot/mssdisp
erase/display
zoom/display
END

MENU Display
Symbol/Symbol
Alloc/Alloc
Stretch/Stretch

zoom/display
draw/display

draw_color/display
erase/display
histo/display
cursor/display
hardcopy/display
END

MENU Stretch

linear/display
table/display
END

MENU Alloc

alloc/display
select/display
dealloc/display
displist/display
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END

MENU Symbol

list/list_symbol
read/read_image
copy/copy_symbol
assign/assign_data
save/save_image
delete/delete

print/printdata
END
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! cipedictionaryfile March/Ill990
functionadd func
pathname"b_in function"
help"add_func('function_name,pathname,help_msg)"
! cube
functioncubereset
pathname"blffn function"
help"cubereset;'
! symbols_ff
functioncopy
pathname"bltin function"

m

help "output = copy (input, {start line, start sample, number of line, number of sample})"
function delete ....

pathname "bltin function"
help "delete (inp'u0"
!builtin 2arg
function matop
pathname "bltin function"

help "output = matop (operation, inputl, input2)"
function add

pathname "appl/bltin/cp/matop,,
help "output = add (inputl, input2) "
function sub

pathname "appl/bltin/cp/matop"
help "output = sub (inputl, input2) "
function mult

pathname "appl/bltin/cp/matop,,
help "output = mult (inputl, input2) "
function div

pathname "appl/bltin/cp/matop"
help "output = div (inputl, input2) "
!typecast
function typecast

pathname "appl/bltin/cp/bltintype"

help "output = typecast (outputdatatype, input) "
function char

pathname "appl/bltin/cp/bltintype"
help "output = char (input) "
function int

pathname "appl/bltin/cp/bltintype"
help "output = int (input) "
function float

pathname "appl/bltin/cp/bltintype"
help "output = float (input) "
! math functions
function math

pathname "appl/bltin/cp/bltinm ath"

help "output = math (operation, input) "
function sqrt
pathname "appl/bltin/cp/bltinmath,,
help "output = sqrt (input) "
function log
pathname "appl/bltin/cp/bltinm ath"
help "output = log (input) "
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function logl0
pathname "appl/bltin/cp/bltinmath"
help "output = logl0 (input) "
function square
pathnam e "appl/bltin/cp/bltinm ath"
help "output = square (input) "
function abs

pathname "appl/bltin/cp/bltinmath"
help "output = abs (input) "
function negate
pathname "appl/bltin/cp/bltinm ath"
help "output = negate (input) "
!statistics functions
function stat

pathname "appl/bltin/cp/bltinstat"
help "output = stat (operation, input) "
function min

pathname "appl/bltin/cp/bltinstat"
help "output = min (input)"
function max

pathname "appl/bltin/cp/bltinstat"
help "output = max (input)"
function mean

pathname "appl/bltin/cp/bltinstat"
help "output = mean (input)"
function median

pathname "appl/bltin/cp/bltinstat"
help "output = median (input)"
function mode
pathname "appl/bltin/cp/bltinstat"
help "output = mode (inpu0"
function std

pathname "appl/bltin/cp/bltinstat"
help "output = std (input)"
function var
pathname "appl/bltin/cp/bltinstat"
help "output = var (input)"
! complex 2arg matrix operation
function cmatop
pathname "appl/bltin/cp/cmatop"
help "{out real, out imagi} = cmatop (operation, inputl_real, inputl_imagi, input2_real, input2_imagi)

-- not imp_mented ]-n CLI mode yet"

function cmpadd
pathname "appl/bltin/cp/cmatop"
help " {out real, out_imagi} = cmpadd (inputl_real, inputl_imagi, input2_real, input2_imagi)

-- not imple-mented in CLI mode yet"
function cmpsub
pathname "appl/bltin/cp/cxnatop"
help " {out real, out_imagi} = cmpsub (inputl_real, inputl_imagi, input2_real, input2_imagi)

-- not implemented in CLI mode yet"
function cmpmult

pathname "appl/bltin/cp/cmatop"
help " {out real, out imagi} = cmpmult (inputl_real, inputl_imagi, input2_real, input2_imagi)

-- not implemented in CLI mode yet"
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functioncmpdiv
pathname"appl/bltin/cp/crnatop,,
help" {out real,out imagi}= cmpdiv (input1 real, inputl imagi, input2 real, input2 imagi)
-- not imple'mented in CLI mode yet" - - - -
! matrix arithematic operation with a constant
function constop
pathname " • ,,appl/bltln/cp/constop

help "output = constop (operation, input 1, input2)"
function cadd

pathname "appl/bltin/cp/constop,,
help "output = cadd (inputl, input2)"
function csub

pathname "appl/bltin/cp/constop-
help "output = csub (inputl, input2)"
function cmult

pathname "appl/bltin/cp/constop-
help "output = cmult (inputl, input2)"
function cdiv

pathname "appl/bltin/cp/constop-
help "output = cdiv (inputl, input2)"
! display utilities
function alloc

pathname "display"

help "alloc (host name, device type, window size) "
function select - - -

pathname "display"
help "select (unitnumber) "
function dealloc

pathname "display"
help "dealloc -- no argument needed"
function disp_list
pathname "display"
help "disp_list -- no argument needed"
function draw

pathname "display"

help "draw (input, {start_line, start_sample}) "
function draw color

pathname "display"

help "draw color (input red, input green, input blue, {start line, start sample}) "function erase .....

pathname "display"

help "erase (i/o/a, {start line, start sample, number of line, number of sample}) "
function lstretch - - - - - -

pathname "display"

help "lstretch (min, max)"
function zoom

pathname "display"

help "zoom (i/o/a, zoom factor, {start_line, start_sample}) "
! multi spectral data disp-iay
function mssdisp
pathname "disp/mssdisp"

help "mssdisp (input, band, {start_line, startsample})"
! pattern generator

function pattem
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pathname"appl/bltin/host/pattem"
help"output= pattern(pattern_type,pattem_size{length,width}, inten {dark,light },size {length,width })
-- consult menu mode for the param of specific pattern"

! spatial filter
function spfilter
pathname "appl/filter/cp/spftlter"
help "output = spfilter (input_image, input_kemel)"
function medfilter

pathname "appl/filter/cp/med filter"
help "output = medfilter (inputimage, {nlw(3), nsw(3)}, thresh(0))"
! frequency filter
function freqfilter
pathname "appl/filter/cp/freqfilter"
help "output = freqfilter (input_image, input_.psf, mode)"
! preprocessing
function reseau

pathname "appl/filter/cp/prep"
help "output = prep (input, reseau_file) -- this program requires hypercube"
!kemel generator
function kemel

pathname "appl/ftlter/host/kemel"
help "output =kemel (psftype, size {nl, ns})"
! power spectrum
function Power

pathname "appl/xform/cp/Power"
help "output = Power (input)"
function powerspec
pathname "appl/xform/cp/powerspec"
help "output = powerspec (real fft result, imagi_fft_result, fold(y/n))"
! complex input fft2
function cfft2

pathname "appl/x form/cp/cfft2"
help "(output_real, output_imagi) = cfft2 (input_real, input_imagi, mode)
-- not implemented in CLI mode yet"
! real input fft2
function ffft2

pathname "appl/xform/cp/rfft2"
help "(output_real, outputimagi) = rfft2 (input, mode) -- not implemented
in CLI mode yet"
! restoration using inverse filter
function invfilter

pathname "appl/restore/cp/inv filter"
help " output = invfilter (input_image, input_psf, noise_level(float), niter, lambda(float), del_lamda(float))"
! restoration using maximum likelihood constraint
function ML

pathname "appl/restore/cp/ML"
help " output = ML (input_image, input..psf, noiselevel(float), niter)"
! restoration using maximum entropy constraint
function ME

pathname "appl/restore/cp/ME"
help " output = ME (input_image, input__psf, noise_level(float), dlamda(float), niter)"

!psf
function feature_.psf
pathname "appl/restore/host/gen_psf"
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help "it needs interactive graphic device -- not available in CLI mode"

function image_psf
pathname "appl/restore/host/gen__psf'
help "it needs interactive graphic device -- not available in CLI mode"
! pyramid reduce
function reduce

pathname "appllgeom/cp/reduce"
help " output = reduce (input, pyramid_level)"
! pyramid expand
function expand
pathname "appl/geom/cp/expand"
help " output = expand (input, pyramidlevel)"
! pyramid merge
function merge
pathname "appl/geom/cp/merge"

help " output = merge (inputl, input2, samplel, sample2, pyramidlevel)"
! concatenate two images
function concat

pathname "appl/geom/host/concat"
help " output = concat (inputl, input2, istat(O for horiz, 1 for vertical), iave(1 for averaging))"
! rotate an image
function rotate

pathname "appl/geom/cp/rotate"
help " output = rotate (input, angle(float), clip_option(1 for clipping))"
function scale

pathname "appl/geom/cp/scale''

help " output = scale (input, x_scale_factor(float), y_scale_factor(float))"
function surfit

pathname "appl/geom/cp/surfit"
help "output = surfit (input, tieptfile, order of fit)"
function gentle

pathname "appl/geom/cp/gentie"
help "output_tiept_file = gentie (input tie file, order of fit, tiept_param{nptx,npty,gapx,gapy })
-- use menu mode"

function tiept
pathname "appl/geom/cp/tiept"

help "output = tiept (input, tiept_file)"
function data dist

pathname "appl/diag/cp/data dist"
help "output = data_dist (input, disttype)"
function percent

pathname "appl/stretch/cp/perc_stretch"
help "output = perc_stretch (input, lower__percent, upper_percent)"
function sar_proc
pathname "appl/geom/cp/sar__proc"
help "output = sar(input, res {x,y,z }, sat__param(h,n,i))"
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Subroutine:

Input:

Output:

Function:

cipecompose_custom_loadmap(symbol, procnum, starting_line, starting_sample,
starting_band, number_of lines, number of samples,
numberofbands);

struct cipe_symbol *symbol;

int starting_line, starting_sample, starting_band;
int number of lines, number_of samples, number_of bands;

Loadmap attribute of symbol for the specified procnum is filled with the new loadmap.

Creates the loadmap for the specified node using the parameters provided.

Subroutine:

Input:

Output:

Function:

Subroutine:

Input:

Output:

Function:

cipe_compose_standard_loadmap(symbol, distribution, [vertical, horizontal] );

struct cipe_symbol *symbol;
int distribution;
int vertical, horizontal;

Loadmap attribute of symbol is filled with new loadmap.

Automatically creates the loadmap for the specified distribution. Distribution should be

one of the keywords, BCAST DIST, HORIZ DIST, GRID_DIST, VERT_DIST,
HORIZ_OVERLAP, GRID_OVI_RLAP, or VdERT OVERLAP. BCAST DIST,
HORIZDIST, GRID_DIST, and VERT DIST require-only the first two argffments.
Overlap loadmap requests require additional parameters to express the number of lines
of overlap in the appropriate planes, e.g. HORIZ_DIST requires parameters for the
number of lines overlap in the vertical plane.

cipecreate_symbol(sname,ni,ns,nb,type)

cipe_sym_name sname;
int nl, ns, nb;
int type;

struct cipe_symbol *cipe_createsymbol0;

Creates an entry in the symbol table under the symbol name stored in sname. Space
will be allocated for the symbol structure but no data space will be created. Each field
in the symbol structure will be initialized with default values or those provided by the
programmer to the routine. A pointer to a symbol structure will be retumed.
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Subroutine:

Input:

Output:

Function:

cipecreate_symboland_data(sname,nl,ns,nb,type)

cipe_sym_name sname;
int nl, ns, nb;
int type;

struct cipe_symbol *cipe_create_symbol_and_dataO;

Creates an entry in the symbol table under the symbol name stored in sname. Space
will be allocated for the symbol structure, including data space. Each field in the sym-
bol structure will be initialized with default values or those provided by the programmer

to the routine. A pointer to a symbol structure will be returned.

Subroutine:

Input:

Output:

Function:

cipe_cube_param_def(param_num, param_type, direction, size, storage_ptr);

int param_num, param_type; int direction, size; char *storage_ptr;

none

Defines a parameter which is to be sent to the hypercube to be used in data processing.
Param hum for the first parameter defined should be one, and successive parameters
should-use successive integers. Paramtype should be one of the keywords,
SYMBOL PARAM or NON SYMBOL PARAM. Direction should indicate whether

the parameter is used for II_PUT, OUTPUT, or BOTH. BOTH is intended for use
when distinct parameters are to be given to distinct nodes of the hypercube, and distinct
values are to be returned. Storage pointed to by storage_ptr should be allocated by the

programmer. Corresponding routine in the hypercube to retrieve parameters is

elt_get_param.

Subroutine:

Input:

Output:

Function:

cipe_delete_symbol(sname)

cipe_sym_name sname;
int sindex;

None

Deletes the symbol table entry for the symbol of name shame, deallocates the symbol
structure, and reorganizes the symbol table. Programmers should only delete temporary
symbols created for their own purposes. Users have the ability to delete their own sym-
bols.
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Subroutine:

Input:

Output:

Function:

cipe_error_read_symbol(sname);

cipe_sym_name sname;

none

Takes the symbol name given as input and checks to see if it is present. If the symbol
does not exist it returns a -1 and prints an error message for the user.

Subroutine:

Input:

Output:

Function:

cipe_get_symbol(sname)

cipe_sym_name sname;

struct cipe_symbol *cipe_get_symboiO;

Returns a pointer to a symbol structure with the name sname.

Subroutine:

Input:

Output:

Function:

cipe_warn_writesymbol(sname);

cipe_sym_name sname;

none

Takes the symbol name given as input and checks to see if it is present.
exists it returns -1 and prints a warning message for the user.

If the symbol
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Subroutine:

Input:

Output:

Function:

cipedef(param_num, prompt, param_type, param_storage, num of elements,

if_req);

int param_num;
char *prompt;
int param_type;
int num of elements, ifreq;

char *param_storage;

Provides for the user interface for either CLI or menu mode and associates a user's in-

put with a variable declared in the application. A parameter entry screen will be created
in menu mode, and user input will be placed in the space pointed to by param_storage,

when cipedef is followed by a call to cipepar. The first call to cipedef should use a
param_num of 1. Successive calls to cipedef should use successive integers for
param num. Param type should be one of the keywords INPUT SYMBOL,
OUTPU-T SYMBOL,-STRING, INT, FLOAT, DOUBLE, BOOL, INT ARRAY,
FLOAT ARRAY, or DOUBLE ARRAY. Ifreq should be one of the keywords REQ,

required, or DEF, default.

Subroutine:

Input:

Output:

Function:

cipepar(error_routineO, help_routine());

int errorroutine0; int check_routine();

none

Produces a parameter entry screen in menu mode and stores a user's input in the provid-
ed storage locations so it is available to the application. Cipepar also allows a pro-
grammer to provide help and error checking for user input. Help provided here is not
available in CLI mode. Error checking is available for both CLI and menu modes.
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Subroutine:

Input:

Output:

Function:

elt_createsymbol(symbol_name, number of lines,
number of bands, type of data);

number of samples,

eit name symbol name;
int-number_of_lines, number of samples, number of bands;
int type of data;

struct elt_symbol *elt_create_symbolO;

Creates a symbol of name symbol_name, fills all the symbol attributes with default
values or provided subroutine arguments, but does not create any symbol data space.
Type of data should be one of the keywords: CHARTYPE, SHORTTYPE,
INIT_TYPE, or FLOAT_TYPE.

Subroutine:

Input:

Output:

Function:

eltcreatesymboland_data(symbol..name, number_of lines, numberof__samples,
number_of_bands, type_of_data);

elt name symbol_name;
int-number of lines, number_of samples, number of bands;
int type_of data;

struct elt_symbol *elt_create_symbol._and_dataO;

Creates a symbol of name sname, fills all the symbol attributes with default values or

provided subroutine arguments, and creates data space for the symbol. Type_of_data
should be one of the keywords: CHAR_TYPE, SHORT_TYPE, INIT_TYPE, or
FLOAT TYPE.

Subroutine:

Input:

Output:

Function:

elt_delete_symbol(symbol_name);

elt_name symbol_name;

none

Deletes the symbol of name symbol name. Programmers should only delete temporary
symbols created for their own purposes. User-created symbols should not be deleted by
programmers.



HYPERCUBERESIDENTEXECUTIVESUBROUTINES F-3

Subroutine:

Input:

Output:

Function:

elt_get_param(param_num, pointerto_pointer);

int param_num; char **pointer_to_pointer;

none

Retrieves parameters which ¢ipe_eube param_def designated to be sent to the cube.
Programmer does not have to allocate be space pointed to by pointerto_pointer. The

same param_num should be used in the host and node for the same parameter.








